

ICC-ES Report

ICC-ES | (800) 423-6587 | (562) 699-0543 | www.icc-es.org

Most Widely Accepted and Trusted

ESR-2845

Reissued 05/2016 This report is subject to renewal 05/2018.

DIVISION: 03 00 00—CONCRETE SECTION: 03 16 00—CONCRETE ANCHORS DIVISION: 05 00 00—METALS SECTION: 05 05 19—POST-INSTALLED CONCRETE ANCHORS

REPORT HOLDER:

MKT METALL-KUNSTSTOFF-TECHNIK

AUF DEM IMMEL 2 WEILERBACH 67685 GERMANY

EVALUATION SUBJECT:

MKT VME/VM-ME EPOXY ADHESIVE ANCHOR SYSTEM IN CRACKED AND UNCRACKED CONCRETE

Look for the trusted marks of Conformity!

"2014 Recipient of Prestigious Western States Seismic Policy Council (WSSPC) Award in Excellence"

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright © 2016 ICC Evaluation Service, LLC. All rights reserved.

A Subsidiary of CODE COUNCIL

ICC-ES Evaluation Report

Most Widely Accepted and Trusted

ESR-2845

Reissued May 2016 This report is subject to renewal May 2018.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

DIVISION: 03 00 00-CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00-METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

MKT METALL-KUNSTSTOFF-TECHNIK AUF DEM IMMEL 2 WEILERBACH 67685 GERMANY +49 6374 9116-0 www.mkt-duebel.de info@mkt-duebel.de

EVALUATION SUBJECT:

MKT VME/VM-ME EPOXY ADHESIVE ANCHOR SYSTEM IN CRACKED AND UNCRACKED CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2012, 2009 and 2006 International Building Code[®] (IBC)
- 2012, 2009 and 2006 International Residential Code[®] (IRC)

Property evaluated:

Structural

2.0 USES

General:

The MKT VME/VM-ME epoxy adhesive anchors are used to resist static, wind or earthquake (IBC Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight concrete with 1/2-, ⁵/₈-, ³/₄-, ⁷/₈-, 1-, and 1¹/₄-inch-diameter (12.7, 15.9, 19.1, 22.2, 25.4 and 31.8 mm) threaded steel rods and No. 4 through No. 10 steel reinforcing bars in hammer-drilled holes.

The anchors are used to resist static, wind or earthquake (IBC Seismic Design Categories A and B only) tension and shear loads in uncracked normal-weight concrete only with 3/8-inch-diameter (9.5 mm) threaded steel rods and No. 3 steel reinforcing bars in hammer-drilled holes and uncracked normal-weight concrete only with 1/2-, 5/8-, 3/4-, ⁷/8- and 1-inch-diameter (12.7, 15.9, 19.1, 22.2 and 25.4 mm) threaded steel rods and No. 4 through No. 8 steel reinforcing bars in core drilled holes. Use is limited to A Subsidiary of the International Code Council®

normal-weight concrete with a specified compressive strength, f'_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The anchor system complies with anchors as described in Section 1909 of the 2012 IBC and is an alternative to cast-in-place anchors described in Section 1908 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 and 2006 IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

3.0 DESCRIPTION

3.1 General:

The MKT VME/VM-ME Epoxy Adhesive Anchor System is comprised of a two-component epoxy adhesive filled in cartridges, static mixing nozzles, dispensing tools, hole cleaning equipment and adhesive injection accessories.

MKT VME/VM-ME epoxy adhesive may be used with continuously threaded steel rods or deformed steel reinforcing bars. The primary components of the MKT VME/VM-ME Epoxy Adhesive Anchor System, including the epoxy adhesive cartridge, static mixing nozzle, the nozzle extension tube, dispensing tool and typical steel anchor elements, are shown in Figure 1 of this report. Manufacturer's printed installation instructions (MPII) and parameters, as included with each adhesive unit package, are replicated in Figure 2 of this report.

3.2 Materials:

3.2.1 MKT VME/VM-ME Epoxy Adhesive: MKT VME/VM-ME epoxy adhesive is an injectable twocomponent epoxy. The two components are separated by means of a labelled dual-cylinder cartridge. The two components combine and react when dispensed through a static mixing nozzle, supplied by, MKT which is attached to the cartridge. A nozzle extension tube is also packaged with the cartridge. The VME/VM-ME epoxy adhesive is available in 13-ounce (385 mL), 20-ounce (585 mL), and 47-ounce (1400 mL) cartridges. Each cartridge label is marked with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened cartridge when stored in accordance with the MPII, as illustrated in Figure 2 of this report.

Cleaning Equipment: Hole cleaning 3.2.2 Hole equipment is comprised of steel wire brushes and air pump supplied by MKT, and a compressed air nozzle. The equipment is shown in Figure 2 of this report.

3.2.3 Dispensers: VME/VM-ME epoxy adhesive must be dispensed with manual, pneumatic dispensers, or electric powered dispensers supplied by MKT.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

3.2.4 Steel Anchor Elements:

3.2.4.1 Threaded Steel Rods: Threaded steel rods must be clean and continuously threaded (all-thread) in diameters as described in Table 4 and Figure 2 of this report. Specifications for grades of threaded rod, including the mechanical properties and corresponding nuts and washers, are described in Table 2 of this report. Carbon steel threaded rods must be furnished with a minimum 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633, SC1; or a minimum 0.0021-inch-thick (0.053 mm) mechanically deposited zinc coating complying with ASTM B695, Class 55; or hot dip galvanized zinc coating complying with ASTM A153, Class C or D. The stainless steel threaded rods must comply with ASTM F593. Steel grades and material types (carbon, stainless) of the washers and nuts must be matched to the threaded rods. Threaded steel rods must be straight and free of indentations or other defects along their length. The embedded end may be either flat cut or cut on the bias to a chisel point.

3.2.4.2 Steel Reinforcing Bars: Steel reinforcing bars are deformed reinforcing bars (rebars), as described in Table 3 of this report. Table 4 and Figure 2 of this report summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be clean, straight, and free of mill scale, rust, mud, oil and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in Section 7.3.2 of ACI 318, with the additional condition that the bars must be bent cold, and heating of the reinforcing bars to facilitate field bending is not permitted.

3.2.4.3 Ductility: In accordance with ACI 318 D.1, in order for a steel anchor element to be considered ductile, the tested elongation must be at least 14 percent and the reduction of area must be at least 30 percent. Steel elements with a tested elongation of less than 14 percent or a reduction of area less than 30 percent, or both, are considered brittle. Values for various steel materials are provided in Tables 2 and 3 of this report. Where values are nonconforming or unstated, the steel element must be considered brittle.

3.3 Concrete:

Normal-weight concrete must comply with Sections 1903 and 1905 of the IBC. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Strength Design:

4.1.1 General: The design strength of anchors under the 2012, 2009 and 2006 IBC, as well as the 2012, 2009 and 2006 IRC, must be determined in accordance with ACI 318-11 (ACI 318) and this report.

The strength design of anchors must comply with ACI 318 D.4.1, except as required in ACI 318 D.3.3.

Design parameters are based on ACI 318-11 for use with the 2012, 2009 and 2006 IBC unless noted otherwise in Section 4.1.1 through 4.1.11 of this report.

Design parameters are provided in Tables 4 through Table 7. Strength reduction factors, ϕ , as given in ACI 318-11 D.4.3 must be used for load combinations calculated in accordance with Section 1605.2 IBC or Section 9.2 of ACI 318. Strength reduction factors, ϕ , as given in ACI 318 D.4.4 must be used for load combinations calculated in accordance with ACI 318 Appendix C. **4.1.2 Static Steel Strength in Tension:** The nominal static steel strength of a single anchor in tension, N_{sa} , in accordance with ACI 318 D.5.1.2 and the associated strength reduction factors, ϕ , in accordance with ACI D.4.3, are provided in Table 4 of this report for the anchor element types included in this report. See Table 1.

4.1.3 Static Concrete Breakout Strength in Tension: The nominal static concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318 D.5.2 with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318 D.5.2.2 using the values of $k_{c,cr}$, and $k_{c,uncr}$ as given in the tables of this report. Where analysis indicates no cracking in accordance with ACI 318 D.5.2.6, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N} = 1.0$. See Table 1. For anchors in lightweight concrete see ACI 318 D.3.6. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318 D.3.7. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318 D.5.5. Bond strength values are a function of concrete compressive strength, concrete state (cracked, uncracked), drilling method (hammer-drill, core drilling) and installation conditions (dry concrete, water-saturated concrete, water-filled holes).

Bond strength values shall be multiplied by the associated strength reduction factor ϕ_{nn} and must be modified with the factor κ_{nn} for cases where holes are drilled in water-saturated concrete (κ_{ws}) or where the holes are water-filled at the time of anchor installation (κ_{wf}), as follows:

CONCRETE STATE	DRILLING METHOD	PERMISSIBLE INSTALLATION CONDITIONS	BOND STRENGTH	ASSOCIATED STRENGTH REDUCTION FACTOR
		Dry concrete	τ _{k,cr}	ϕ_{d}
Cracked	Hammer- drill	Water-saturated concrete	τ _{k,cr} • K _{ws}	ϕ_{ws}
		Water-filled hole (flooded)	τ _{k,cr} • K _{wf}	ϕ_{wf}
		Dry concrete	$ au_{k,uncr}$	$\phi_{ m d}$
Uncracked	Hammer- drill	Water-saturated concrete	τ _{k,uncr} • K _{ws}	ϕ_{ws}
		Water-filled hole (flooded)	τ _{k,uncr} • K _{wf}	ϕ_{wf}
		Dry concrete	$ au_{k,uncr}$	$\phi_{ m d}$
Uncracked	Core Drill	Water-saturated concrete	$\tau_{k,uncr} \cdot K_{ws}$	ϕ_{ws}
		Water-filled hole (flooded)	$\tau_{k,uncr} \cdot K_{wf}$	ϕ_{wf}

The bond strength values in Table 6, for hammer-drilled holes, and in Table 7, for core drilled holes, of this report correspond to concrete compressive strength f'_c equal to 2,500 psi (17.2 MPa). For concrete compressive strength, f'_c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c / 2,500)^{0.12}$ [For **SI**: $(f'_c / 17.2)^{0.12}$]. Where applicable, the modified bond strength values must be used in lieu of $\tau_{k,cr}$ and $\tau_{k,uncr}$ in Equations (D-21) and (D-22).

4.1.5 Static Steel Strength in Shear: The nominal static steel strength of a single anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318 D.6.1.2 and strength reduction factors, ϕ , in accordance with ACI 318 D.4.3 are given in Table 4 of this report for the anchor element types included in this report. See Table 1.

4.1.6 Static Concrete Breakout Strength in Shear: The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318 D.6.2 based on information given in Table 5 of this report. See Table 1. The basic concrete breakout strength of a single anchor in shear, V_{b} , must be calculated in accordance with ACI 318 D.6.2.2 using the values of *d* given in Table 4 of this report for the corresponding anchor steel in lieu of d_a (2012 and 2009 IBC) and d_o (2006 IBC). In addition, h_{ef} must be substituted for ℓ_e . In no case must ℓ_e exceed 8*d*. The value of f_c must be limited to a maximum of 8,000 psi (55 MPa), in accordance with ACI 318 D.3.7.

4.1.7 Static Concrete Pryout Strength in Shear: The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , shall be calculated in accordance with ACI 318 D.6.3.

4.1.8 Interaction of Tensile and Shear Forces: For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 D.7.

4.1.9 Minimum Member Thickness h_{min} , Anchor Spacing s_{min} , Edge Distance c_{min} : In lieu of ACI 318 D.8.1 and D.8.3, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. The minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. The minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318 D.8.4 applies.

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for edge distances less than 5 anchor diameters (5*d*). T_{max} is subject to the edge distance, c_{min} , and anchor spacing, s_{min} , and shall comply with the following requirements:

MAXIMUM TORQUE SUBJECT TO EDGE DISTANCE										
NOMINAL ANCHOR SIZE, d	MIN. EDGE DISTANCE, c _{min}	MAXIMUM TORQUE, <i>T_{max}</i>								
all sizes	5d	5d	1.0· <i>T_{max}</i>							
³ / ₈ in. to 1 in. (9.5 mm to 25.4 mm)	1.75 in. (45 mm)	5.4	0.45 T							
1 ¹ / ₄ in. (31.8 mm)	2.75 in. (70 mm)	50	0.45• <i>I_{max}</i>							

For values of T_{max} , see Table 8 and Figure 2 of this report.

4.1.10 Critical Edge Distance c_{ac} and $\psi_{cp,Na}$. The modification factor $\psi_{cp,Na}$, must be determined in accordance with ACI 318 D.5.5.5 except as noted below:

For all cases where c_{Na}/c_{ac} <1.0, $\psi_{cp,Na}$ determined from ACI 318 Eq. D-27 need not be taken less than c_{Na}/c_{ac} . For all other cases, $\psi_{cp,Na}$ shall be taken as 1.0.

The critical edge distance, c_{ac} must be calculated according to Eq. D-27a, in lieu of ACI 318 D.8.6.

$$c_{ac} = h_{ef} \cdot \left(\frac{T_{k, unor}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$
 (Eq. D-27a)

where

 $\left|\frac{n}{h}\right|$ need not be taken as larger than 2.4; and

 $\tau_{k,uncr}$ = the characteristic bond strength stated in the tables of this report whereby $\tau_{k,uncr}$ need not be taken as larger than:

$$\tau_{k,uncr} = \frac{k_{uncr} \sqrt{h_{ef} f_c'}}{\pi \cdot d_a}$$
 Eq. (4-1)

4.1.11 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchors must be designed in accordance with ACI 318 D.3.3.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in Table 4 for the anchor element types included in this report. The nominal bond strength $\tau_{\kappa;cr}$ need not be adjusted by $\alpha_{N,seis}$ since for the MKT VME/VM-ME, $\alpha_{N,seis}$ = 1.0.

As an exception to ACI 318 Section D.3.3.4.2: Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy Section ACI 318 D.3.3.4.3(d).

Under ACI 318 D.3.3.4.3(d), in lieu of requiring the anchor design tensile strength to satisfy the tensile strength requirements of ACI 318 D.4.1.1, the anchor design tensile strength shall be calculated from ACI 318D.3.3.4.4.

The following exceptions apply to ACI 318 D.3.3.5.2:

- For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318 D.6.2 and D.6.3 need not be computed and ACI 318 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.
 - 1.2. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).
 - 1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).
 - 1.4. Anchor bolts are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.
 - 1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.
 - 1.6. The sill plate is 2-inch or 3-inch nominal thickness.
- For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318 D.6.2 and D.6.3 need not be computed and ACI 318 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 2.1. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).
 - 2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).

- 2.3. Anchors are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the track.
- 2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.
- 2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

 In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318 D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with ACI 318 D.6.2.1(c).

4.2 Installation:

Installation parameters are illustrated in Table 8 of this report. Installation must be in accordance with ACI 318 D.9.1 and D.9.2. Anchor locations must comply with this report and the plans and specifications approved by the code official. Installation of the MKT VME/VM-ME Epoxy Adhesive Anchor System must be in accordance with the Manufacturer's printed installation instructions (MPII) included in each unit package as described in Figure 2 of this report.

4.3 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2012 IBC, Sections 1704.4 and 1704.15 of the 2009 IBC or Section 1704.13 of the 2006 IBC and this report. The special inspector must be on the jobsite initially during anchor installation to verify the anchor dimensions, concrete type, concrete compressive strength, hole dimensions, adhesive identification and expiration date, hole cleaning procedures, anchor spacing, edge distances, concrete thickness, anchor embedment, tightening torque and adherence to the manufacturer's printed installation instructions (MPII).

The special inspector must verify the initial installations of each type and size of adhesive anchor by construction personnel on the site. Subsequent installations of the same anchor type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed in accordance with ACI 318 D.9.2.4.

Under the IBC, additional requirements as set forth in Sections 1705, 1706 or 1707 must be observed, where applicable.

4.4 Compliance with NSF/ANSI Standard 61:

The MKT VME/VM-ME Epoxy Adhesive Anchor System complies with the requirements of NSF/ANSI Standard 61, as referenced in Section 605 of the 2009 and 2006 *International Plumbing Code*[®] (IPC), and is certified for use

as an anchoring adhesive for installing threaded rods less than or equal to 1.3 inches (33 mm) in diameter in concrete for water treatment applications. NSF/ANSI Standard 61 listing is provided by NSF International.

5.0 CONDITIONS OF USE

The MKT VME/VM-ME Epoxy Adhesive Anchor System described in this report complies with or is a suitable alternative to what is specified in, the codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** MKT VME/VM-ME epoxy adhesive anchors must be installed in accordance with the Manufacturer's printed installation instructions (MPII) as attached to each cartridge and described in Figure 2 of this report.
- **5.2** The anchors described in this report must be installed in cracked or uncracked normal-weight concrete having a specified compressive strength $f'_c = 2,500$ psi to 8,500 psi (17.2 MPa to 58.6 MPa).
- **5.3** The values of f_c used for calculation purposes must not exceed 8,000 psi (55 MPa).
- **5.4** Anchors must be installed in concrete base materials in holes predrilled in accordance with the installation instructions provided in Figure 2 of this report.
- **5.5** Loads applied to the anchors must be adjusted in accordance with Section 1605.2 of the IBC for strength design.
- **5.6** MKT VME/VM-ME epoxy adhesive anchors are recognized for use to resist short- and long-term loads, including wind and earthquake loads, subject to the conditions of this report.
- 5.7 In structures assigned to Seismic Design Categories C, D, E, and F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report.
- **5.8** The anchors with ¹/₂-, ⁵/₈-, ³/₄-, ⁷/₈- 1- and 1¹/₄-inchdiameter (12.7, 15.9, 19.1, 22.2, 25.4 and 31.8 mm) threaded steel rods and No. 4 through No. 10 steel reinforcing bars may be installed in normal-weight concrete that is cracked or that may be expected to crack during the service life of the anchor when installed in hammer-drilled holes. The anchors with ³/₈-inch-diameter (9.5 mm) and No. 3 steel reinforcing bars are limited to installation in uncracked concrete when installed in hammer-drilled holes. The anchors with ¹/₂-, ⁵/₈-, ³/₄-, ⁷/₈- and 1-inch-diameter (12.7, 15.9, 19.1, 22.2 and 25.4 mm) threaded steel rods and No. 4 through No. 8 steel reinforcing bars are limited to installation in uncracked concrete when installed in core drilled holes. See Table 1 of this report.
- **5.9** Strength design values must be established in accordance with Section 4.1 of this report.
- **5.10** Minimum anchor spacing and edge distance, as well as minimum member thickness, must comply with the values given in this report.
- **5.11** Prior to anchor installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- 5.12 Anchors are not permitted to support fire-resistive construction. Where not otherwise prohibited by the

code, MKT VME/VM-ME epoxy adhesive anchors are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:

- Anchors are used to resist wind or seismic forces only.
- Anchors that support gravity load-bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
- Anchors are used to support non-structural elements.
- **5.13** Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.14** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- **5.15** Use of hot-dipped galvanized carbon steel and stainless steel rods is permitted for exterior exposure or damp environments.
- **5.16** Steel anchoring materials in contact with preservativetreated and fire-retardant-treated wood must be of zinc-coated steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- **5.17** Periodic special inspection must be provided in accordance with Section 4.3 of this report. Continuous special inspection for anchors installed in horizontal or upwardly inclined orientations must be provided in accordance with Section 4.3 of this report.

- **5.18** Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed by personnel certified by an applicable certification program in accordance with ACI 318 D.9.2.2 or D.9.2.3.
- 5.19 Anchors shall not be used for applications where the concrete temperature can vary from 40°F (5°C) or less to 80°F (27°C) or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building facade systems and other applications subject to direct sun exposure.
- **5.20** MKT VME/VM-ME epoxy adhesive is manufactured in Willich, Germany, under a quality-control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete (AC308), dated January 2016, which incorporates requirements in ACI 355.4-11, including, but not limited to, tests under freeze/thaw conditions (Table3.2, test series 6), tests under sustained load (Table 3.2, test series 7), tests for installation direction (Table 3.2, test series 8), tests for resistance to alkalinity (Table 3.2, test series 13a) and tests for resistance to sulfur (Table 3.2, test series 13b).

7.0 IDENTIFICATION

MKT VME/VM-ME epoxy adhesive is identified by packaging labeled with the MKT VME/VM-ME name and address, the product name, the lot number, the expiration date, and the evaluation report number (ESR-2845). Threaded rods, nuts, washers and deformed reinforcing bars are standard steel anchor elements and must conform to applicable national or international specifications as set forth in Table 2 and Table 3 of this report.

TABLE 1—DESIGN	TABLE INDEX
----------------	-------------

	DESIGN STREN	IGTH ¹	THREADED ROD (FRACTIONAL)	DEFORMED REINFORCING BAR			
Steel	N _{sa} , V _{sa}		Table 4	Table 4			
Concrete	N _{cb} , N _{cbg} , V _{cb} , V _{cbg} , V _{cp} , V _{cpg}		Table 5	Table 5			
Dand ²	N N	Hammer-drilled holes	Table 6	Table 6			
Boug	N _a , N _{ag}	Diamond cored holes	Table 7	Table 7			

¹Reference ACI 318-11 D.4.1.1.

²See Section 4.1 of this report.

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON FRACTIONAL THREADED CARBON AND STAINLESS STEEL ROD MATERIALS¹

THREADED ROD SPECIFICATION		UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MIN. SPECIFIED YIELDSTRENGTH 0.2 PERCENT OFFSET, f _{ya}	f _{uta} f _{ya}	ELONGATION MINIMUM PERCENT ⁶	REDUCTION OF AREA MINIMUM PERCENT	NUT SPECIFICATION ⁷
Carbon Steel	ASTM A36 ² and F1554 ³ Grade 36	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40 ⁸	ASTM A194/A563 Grade A
	ASTM A193 ⁴ Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	ASTM A194/A563 Grade DH
Stainless Steel (Types 304 and 316)	ASTM F593 ⁵ CW1 $(^{3}/_{8}$ to $^{5}/_{8}$ inch dia.)	psi (MPa)	100,000 (690)	65,000 (450)	1.54	20	_9	ASTM F594
	ASTM F593 ⁵ CW2 $({}^{3}/_{4}$ to $1{}^{1}/_{4}$ inch dia.	psi (MPa)	85,000 (590)	45,000 (310)	1.89	25	9	1, 2 or 3

For SI: 1 inch = 25.4 mm, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

Adhesive must be used with continuously threaded carbon or stainless steels (all-thread) that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series. Tabulated values correspond to anchor diameters included in this report.

Standard Specification for Carbon Structural Steel.

³Standard Specification for Anchor Bolts, Steel, 36-ksi Yield Strength.

⁴Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose ⁵Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

Based on 2-inch (50 mm) gauge length except ASTM A193, which are based on a gauge length of 4d.

⁷Nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod. Material types of the nuts and washers must be matched to the threaded rods.

Minimum percent reduction of area reported in ASTM A36 is 50 percent.

⁹Minimum percent reduction of area not reported in the referenced ASTM standard.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS¹

REINFORCING SPECIFICATION	UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, futa	MINIMUM SPECIFIED YIELD STRENGTH, fya				
ASTM A615 ² , A767 ⁴ , Grade 60	psi	90,000	60,000				
	(MPa)	(620)	(414)				
ASTM A706 ³ , A767 ⁴ , Grade 60	psi	80,000	60,000				
	(MPa)	(550)	(414)				

For SI: 1 psi = 0.006897 MPa. For pound-inch units: 1 MPa = 145.0 psi.

¹Adhesive must be used with specified deformed reinforcing bars. Tabulated values correspond to bar sizes included in this report.

²Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. Bars may be considered ductile elements provided the actual yield strength based on mill tests does not exceed f_{ya} by more than 18,000 psi and the ratio of the actual tensile strength to actual yield strength is not less than 1.25. Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement. Bars furnished to specification are considered ductile elements. ⁴Standard Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement. Bars furnished to specification are considered brittle elements unless evidence is otherwise shown to the satisfaction of the registered design professional and code official in accordance with Section 3.2.4.3 of this report.

FIGURE 1-MKT VME/VM-ME EPOXY ADHESIVE ANCHOR SYSTEM INCLUDING TYPICAL STEEL ANCHOR ELEMENTS

							NON	IINAL RO		ER (inch)) ¹			
		DESIGN INFORMATION		SYMBOL	UNITS	³ / ₈	¹ / ₂	⁵ /8	³ /4	7/8	1	1 ¹ / ₄		
Threade	d rod no	minal outside diameter		d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)		
Threade	d rod eff	ective cross-sectional area		A _{se}	inch² (mm²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.9691 (625)		
		Nominal strength as governed I	oy steel	N _{sa}	lbf (kN)	4,495 (20.0)	8,230 (36.6)	13,110 (58.3)	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,210 (250.0)		
ASTN and F	A A36	strength (for a single anchor)		V _{sa}	lbf (kN)	2,245 (10.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,725 (150.0)		
Grad	le 36	Reduction factor for seismic she	ear	α _{V,seis}	-	Not applicable	0.85	0.85	0.85	0.85	0.80	0.80		
		Strength reduction factor for ter	ϕ	-				0.75						
		Strength reduction factor for sh	ear ²	φ	-				0.65					
		Nominal strength as governed I	by steel	N _{sa}	lbf (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)		
ASTM A193 Grade B7		strength (for a single anchor)	V _{sa}	lbf (kN)	4,845 (21.5)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.1)	72,680 (323.3)			
		Reduction factor for seismic she	$\alpha_{V,seis}$	-	Not applicable	0.85	0.85	0.85	0.85	0.80	0.80			
		Strength reduction factor for ter	nsion ²	ϕ	-				0.75					
		Strength reduction factor for she	ϕ	-	0.65									
	Nominal strength as governed by stee		oy steel	N _{sa}	lbf (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,370 (366.4)		
ASTM CW St	l F593 ainless	strength (for a single anchor)		V _{sa}	lbf (kN)	3,875 (17.2)	8,515 (37.9)	13,560 (60.3)	17,060 (75.9)	23,545 (104.7)	30,890 (137.4)	49,425 (219.8)		
(Type and	s 304 316)	Reduction factor for seismic she	$\alpha_{V,seis}$	-	Not applicable	0.85	0.85	0.85	0.85	0.80	0.80			
ana	0.0)	Strength reduction factor for ter	ϕ	-				0.65						
		Strength reduction factor for she	ear ²	ϕ	-	0.60								
	DES		SYMBOL			NOMINAL REINFORCING BAR SIZE (REBAR)								
	DLO		OTMEOL	oniro	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10		
Rebar n	ominal o	utside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)		
Rebar e	fective c	ross-sectional area	A _{se}	inch ² (mm ²)	0.110 (71)	0.200 (129)	0.310 (200)	0.440 (284)	0.600 (387)	0.790 (510)	1.000 (645)	1.270 (819)		
	Nomina	I strength as governed by steel	N _{sa}	lbf (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)	71,100 (316.3)	90,000 (400.3)	114,300 (508.4)		
ASTM A615,	strength	n (for a single anchor)	V _{sa}	lbf (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)		
Grade 60	Reducti	on factor for seismic shear	$\alpha_{V,seis}$	-	Not applicable	0.70	0.70	0.70	0.70	0.75	0.75	0.75		
00	Strengt	n reduction factor for tension ²	ϕ	-				0.65						
	Strengt	n reduction factor for shear ²	ϕ	-				0.60						
	Nomina	I strength as governed by steel	N _{sa}	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)		
ASTM A706,	strength	n (for a single anchor)	V _{sa}	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)		
Grade 60	Reducti	on factor for seismic shear	$\alpha_{V,seis}$	-	Not applicable	0.70	0.70	0.70	0.70	0.75	0.75	0.75		
00	Strengt	n reduction factor for tension ²	ϕ	-				0.75						
	Strengt	n reduction factor for shear ²	φ	-				0.65						

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

¹Values provided for fractional steel element material types based on specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts must be appropriate for the rod, as listed in Table 2 of this report. ²The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.3. If the

load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

TABLE 5—CONCRETE BREAKOUT AND PRYOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR A CORE DRILL AND DIAMOND CORE BIT¹

DESIGN INFORMATION	SYMBOL	UNITS	NOMINAL ROD DIAMETER (inch) / REINFORCING BAR SIZE								
DESIGN INFORMATION	STMBOL		³ / ₈ or #3	¹ / ₂ or #4	⁵ / ₈ or #5	³ / ₄ or #6	⁷ / ₈ or #7	1 or #8	#9	1 ¹ / ₄ or #10	
Effectiveness factor for cracked concrete	k _{c,cr}	- (SI)	Not 17 Applicable (7.1)								
Effectiveness factor for uncracked concrete	k _{c,uncr}	- (SI)	24 (10.0)								
Minimum embedment	h _{ef,min}	inch (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)	
Maximum embedment	h _{ef,max}	inch (mm)	4 ¹ / ₂ (114)	6 (152)	7 ¹ / ₂ (191)	9 (229)	10 ¹ / ₂ (267)	12 (305)	13 ¹ / ₂ (343)	15 (381)	
Minimum anchor spacing	S _{min}	inch (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 ¹ / ₈ (79)	3 ³ / ₄ (95)	4 ³ / ₈ (111)	5 (127)	5 ⁵ / ₈ (143)	6 ¹ / ₄ (159)	
Minimum edge distance	C _{min}	inch (mm)	5 <i>d</i> ;or see	Section 4.	1.9 of this r	eport for des	sign with rea	duced mini	mum edg	e distances	
Minimum member thickness	h _{min}	inch (mm)	h _{ef} + (h _{ef} +	1 ¹ / ₄ - 30)			h _{ef} +2	2d _o ³			
Critical edge distance—splitting (for uncracked concrete)	C _{ac}	inch (mm)	See Section 4.1.10 of this report								
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-	0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-				0.7	70				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

¹Additional setting information is described in the installation instructions, Figure 2 of this report.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318 D.4.3. The tabulated value of ¢ applies when the load combinations of Section 1605.2 of the IBC, or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.3. If the load combinations of ACI 318 Appendix C are used, the appropriate value of \u03c6 must be determined in accordance with ACI 318 D.4.4. ${}^{3}d_{o}$ = hole diameter; for installation parameters see Table 8 of this report.

TABLE 6—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

				NOMIN	AL ROD	DIAME	TER (inc	h)/REI	NFORCI	NG BAR	SIZE
DESIG	IN INFORMATION	SYMBOL	UNITS	³ / ₈ or #3	¹ / ₂ or #4	⁵ / ₈ or #5	³ / ₄ or #6	⁷ / ₈ or #7	1 or #8	#9	1 ¹ / ₄ or #10
Minimum embedment	Minimum embedment					3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)
Maximum embedment	h _{ef,max}	inch (mm)	4 ¹ / ₂ (114)	6 (152)	7 ¹ / ₂ (191)	9 (229)	10 ¹ / ₂ (267)	12 (305)	13 ¹ / ₂ (343)	15 (381)	
Temperature Range A ^{2,3,4}	Characteristic bond strength in cracked concrete ⁶	τ _{k,cr}	psi (N/mm²)	Not applicable	440 (3.0)	362 (2.5)	337 (2.3)	318 (2.2)	318 (2.2)	318 (2.2)	318 (2.2)
	Characteristic bond strength in uncracked concrete ⁷	T _{k,uncr}	psi (N/mm²)	968 (6.7)	909 (6.3)	870 (6.0)	834 (5.8)	807 (5.6)	783 (5.4)	763 (5.3)	748 (5.2)
Temperature Range B ^{2,3,4}	Characteristic bond strength in cracked concrete ⁶	τ _{k,cr}	psi (N/mm²)	Not applicable	557 (3.8)	458 (3.2)	426 (2.9)	402 (2.8)	402 (2.8)	402 (2.8)	402 (2.8)
	Characteristic bond strength in uncracked concrete ⁷	τ _{k,uncr}	psi (N/mm²)	1,225 (8.5)	1,151 (7.9)	1,101 (7.6)	1,056 (7.3)	1,021 (7.0)	991 (6.8)	966 (6.7)	946 (6.5)
	Dry concrete	ϕ_d	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Water esturated esperate	$\phi_{\rm ws}$	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45
Permissible Installation	Water-Saturated Concrete	K _{WS}	-	1.0	1.0	1.0	1.0	1.0	1.0	0.99	0.97
	Water filled hele (fleeded)	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	water-miled hole (houded)	K _{WS}	-	0.89	0.80	0.73	0.68	0.63	0.60	0.57	0.55
Reduction factor for seismic	tension	∝ _{N,seis}	-				1.0)			

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

⁷Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

¹Bond strength values correspond to concrete compressive strength $f'_c = 2,500$ psi. For concrete compressive strength, f'_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f'_c / 2,500)^{0.12}$ [For **SI**: $(f'_c / 17.2)^{0.12}$]. See Section 4.1.4 of this report. ²**Temperature Range A**: Maximum long-term temperature = 110°F (43°C), maximum short-term temperature = 176°F (80°C). **Temperature Range B**: Maximum long-term temperature = 110°F (43°C), maximum short-term temperature = 140°F (60°C). The maximum short-term temperature may be increased to 162°F (72°C) for Temperature Range B provided characteristic bond strength are reduced by 10 percent.

Shori-term elevated concrete temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.

⁴Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind or seismic, bond strengths may be increased by 75 percent for Temperature Range A and Temperature Range.

⁵Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or watersaturated concrete where the drilled holes contain standing water at the time of anchor installation. For installation instructions see Figure 2 of this report.

⁶For structures assigned to Seismic Design Categories Č, D, E or F, bond strength values for cracked concrete do not require an additional reduction factor applied ($\alpha_{N,seis} = 1.0$). See Section 4.1.11 of this report.

Tmax

do (deit)

Threaded Rod or Rebar

à

TABLE 7—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS IN HOLES DRILLED WITH A CORE DRILL AND DIAMOND CORE BIT

	DESIGN INFORMATION	SYMBOL		NOMINAL F	ROD DIAMET	ER (inch) / R	EINFORCING	G BAR SIZE
	DESIGN INFORMATION	STWIDUL		¹ / ₂ or #4	⁵ / ₈ or #5	³ / ₄ or #6	⁷ / ₈ or #7	1 or #8
Minimum embedme	ent	h _{ef,min}	inch (mm)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)
Maximum embedm	ent	h _{ef,max}	inch (mm)	6 (152)	7 ¹ / ₂ (191)	9 (229)	10 ¹ / ₂ (267)	12 (305)
Temperature Range A ^{2,3,4}	Characteristic bond strength in uncracked concrete ⁶	τ _{k,uncr}	psi (N/mm²)	895 (6.2)	849 (5.9)	816 (5.6)	791 (5.5)	770 (5.3)
Temperature Range B ^{2,3,4}	Characteristic bond strength in uncracked concrete ⁶	τ _{k,uncr}	psi (N/mm ²)	1,133 (7.8)	1,075 (7.4)	1,033 (7.1)	1,002 (6.9)	975 (6.7)
	Dry concrete	ϕ_d	-	0.55	0.45	0.45	0.45	0.45
Permissible	Water-saturated concrete	ϕ_{ws}	-	0.55	0.45	0.45	0.45	0.45
Installation Conditions ⁵		K _{WS}	-	1.0	1.0	1.0	1.0	1.0
	Weter filled hele (fleeded)	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45
	Water-Inied Hole (Nooded)	K _{Wf}		0.94	0.95	0.95	0.95	0.96
Reduction factor for	Reduction factor for seismic tension					1.0		

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.12}$ [For **SI**: $(f_c / 17.2)^{0.12}$]. See Section 4.1.4 of this report. ²**Temperature Range A**: Maximum long-term temperature = 110°F (43°C), maximum short-term temperature = 176°F (80°C). **Temperature Range B**: Maximum long-term temperature = 110°F (43°C), maximum short-term temperature = 176°F (80°C). long-term temperature = 110°F (43°C), maximum short-term temperature = 140°F (60°C). The maximum short-term temperature may be increased to 162°F (72°C) for Temperature Range B provided characteristic bond strength are reduced by 10 percent. ³Short-term elevated concrete temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term concrete temperatures are

roughly constant over significant periods of time.

Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind or seismic, bond strengths may be increased by 67 percent for Temperature Range A and for Temperature Range B.

⁵Permissible installation conditions include dry concrete, water-saturated concrete and water-filled holes. Water-filled holes include applications in dry or watersaturated concrete where the drilled holes contain standing water at the time of anchor installation. For installation instructions see Figure 2 of this report. ⁶Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.

TABLE 8—INSTALLATION PARAMETERS FOR FRACTIONAL THREADED ROD AND REINFORCING BARS

	DADAMETED	EVMBOL		N	IOMINAL	ROD DIAM	ETER (inc	ER (inch) / REINFORCING BAR SIZE					
	PARAMETER	STIVIBUL		³ / ₈ or #3	¹ / ₂ or #4	⁵ / ₈ or #5	³ / ₄ or #6	⁷ / ₈ or #7	1 or #8	#9	1 ¹ / ₄	#10	
	Threaded rod outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	N/A ¹	1.250 (31.8)	N/A ¹	
	Rebar nominal outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	N/A ¹	1.250 (31.8)	
	Carbide drill bit nominal size	$d_o\left(d_{bit} ight)$	inch	⁷ / ₁₆	⁹ / ₁₆	$^{11}/_{16} \text{ or } ^{3}/_{4}$	⁷ / ₈	1	1 ¹ / ₈	1 ³ / ₈	1 ³ / ₈	1 ¹ / ₂	
	Diamond core bit nominal size	$d_o\left(d_{bit} ight)$	inch	N/A ¹	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₈	N/A ¹	N/A ¹	N/A ¹	
s	Minimum embedment	h _{ef,min}	inch (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 5 (127) (127)		
,	Maximum embedment	h _{ef,max}	inch (mm)	4 ¹ / ₂ (114)	6 (152)	7 ¹ / ₂ (191)	9 (229)	10 ¹ / ₂ (267)	12 (305)	13 ¹ / ₂ (343)	15 (381)	15 (381)	
	Max. torque	T _{max}	ft-lbs	15	33	60	105						
	Max. torque ² (low strength rod)	T _{max}	ft-lbs	10	25	50	90	125	165	165	280	280	
	Minimum anchor spacing	S _{min}	inch (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 ¹ / ₈ (79)	3 ³ / ₄ (95)	4 ³ / ₈ (111)	5 (127)	5 ⁵ / ₈ (143)	6 ¹ / ₄ (159)	6 ¹ / ₄ (159)	
	Minimum edge distance	C _{min}	inch (mm)	5 <i>d</i> ;or see Section 4.1.9 of this report for installation parameters with reduced minimum edge distances									
	Minimum member thickness	h _{min}	inch (mm)	h _{ef} + (h _{ef} +	1 ¹ / ₄ - 30)	$h_{ef} + 2d_o$							

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m. For pound-inch units: 1 mm = 0.03937 inch, 1 N-m = 0.7375 ft-lbf.

 $^{1}N/A = Not Applicable.$

²These values apply to ASTM A36 / F1554, Grade 36 threaded rods.

FIGURE 2—INSTALLATION INSTRUCTIONS

	1				
Threaded rod diameter	Rebar size	ANSI drill bit diameter	Min. brush diameter, D _{min}	Brush length, L ¹ (inches)	
(inch)	(no.)	(inch)	(inches)		Air blowers
³ / ₈	#3	⁷ / ₁₆	0.475	6 ³ / ₄	Hand pump (volume 25 fl. oz.) or
¹ / ₂	-	⁹ / ₁₆	0.600	6 ³ / ₄	
-	#4	⁵ /8	0.708	6 ³ / ₄	3
⁵ / ₈	#5	¹¹ / ₁₆ or ³ / ₄	0.735	7 ⁷ / ₈	Hand pump
3/4	#6	⁷ /8	0.920	7 ⁷ / ₈	
⁷ / ₈	#7	1	1.045	11 ⁷ / ₈	Compressed air nozzle only
1	#8	1 ¹ / ₈	1.175	11 ⁷ / ₈	
1 ¹ / ₄	#9	1 ³ / ₈	1.425	11 ⁷ / ₈	Comproseed air pozzla
-	#10	1 ¹ / ₂	1.550	11 ⁷ / ₈	
A brush exte deeper than	ension mus the listed	st be used w brush length	ith a steel wire bru	ish for holes drilled	
¹ For installati inch ANSI dri inserted into t	ion with 5/8- Il bit is used the cleaned	inch threaded the user must borehole with	rod and #5 rebar siz check before injecti out resistance.	ze, the preferred ANSI ding the adhesive to verify	ill bit diameter is 3/4-inch. If an 11/16- y that the steel anchor element can be

1. Hole cleaning tools – wire brushes and air blowers

FIGURE 2—INSTALLATION INSTRUCTIONS (Continued)

		3. Gel ((working) times and curing time	S								
			Temperature of base n	naterial		0	iel (working	g) time		Ful	curing tim	е
100% solids epox	y anchoring by trained		41 °F	5 °C			180 minu	tes			50 hours	
uctions and SDS for	by utilitional		50 °F	10 °C			120 minu	tes			30 hours	
			68 °F	20 °C			30 minut	es			10 hours	
			86 °F	30 °C			20 minut	es			6 hours	
nen drilling holes in	to concrete,		95 °F	35 °C			15 minut	es			5 hours	
when handling and	dispensing he inhaled		105 °F2	40 °C ²			12 minut	es			4 hours	
oved chemical ma	sk to avoid	² Only v	valid for vertical downwards installs	ation		_						
onfined area, or if	sensitive to water if skin	4. Inst	allation parameters									
eek immediate medi	cal attention	Table 4	4.1 Specifications for installation	of threaded	rods							
or pegins to cause o	ISCOMFOR.						Nomi	inal threa	ded rod s	size		
Sheet (MSDS)		Ancho	r property / Setting information		31 ₈ "	1/2"	2 ⁸ "	3 ¹ 4	-	" ₈ "	1"	1 ¹ / ₄ "
		q	= Nominal anchor rod diameter (ir	j.)	0.375	0.5	0.625	0.7	75 (0.875	-	1.25
ed does not pose a	dust hazard.	A_{se}	= Nominal area of threaded rod (ir	n. ²)	0.078	0.142	0.226	0.3	35 (0.462	0.606	0.969
roup I carcinogen as been long-term	based upon and chronic	$d_{0}(d_{\mathrm{bit}})$	= Nominal ANSI drill bit size (in.)		7/ ₁₆	⁹ / ₁₆	11/ ₁₆	12	. 8	-	1 ¹ / ₈	1 ^{3/8}
uarry, stone crushin	g, refractory	$d_0(d_{\rm bit})$	= Nominal diamond core bit size ((in.)	N/A	^{9/16}	¹¹ / ₁₆	12	. 8	-	1 ^{1/8}	N/A
fully cured) produ	ererore, this ct is further	T_{max}	= Maximum torque (ftlb.) for A19	3 B7	15	33	60	10	15	125	165	280
er respiratory and e	re protection	T_{max}	= Maximum torque (ftlb.) for A36	s/A307	10	25	50	6	0			
		$h_{\rm ef,min}$	= Minimum embedment (inches)		$2^{3}/_{8}$	$2^{3/4}$	31/8	31	12	$3^{1/_{2}}$	4	5
atures between 32°	F (0°C) and	$h_{ef,max}$	= Maximum embedment (inches)		$4^{1}/_{2}$	9	7 ¹ / ₂	0)		10 ¹ / ₂	12	15
nd name. Keep pi nade. Store awav fro	arrially used om heat and	S_{min}	 Minimum spacing (inches) 		$1^{7}/_{8}$	$2^{1}/_{2}$	31/8	33	/4	$4^{3}/_{8}$	5	$6^{1}/_{4}$
		C _{min}	= Minimum edge distance (inches	()	1 ³ /4	$1^{3}/_{4}$	$1^{3}/_{4}$	13	/4	1 ³ /4	$1^{3/4}$	$2^{3}/_{4}$
Do pot rise evnir	ad product	h_{min}	 Minimum member thickness (inc 	ches)	h_{et}	+ 1 ¹ / ₄			'Y	_{er} + 2d ₀		
t°F (5°C - 40°C) w	then in use.	Table 4	4.2 Specifications for installation	of deformed	d steel rei	nforcing ba	Irs					
ened adhesive in t w mixing nozzle and	he attached discard the						Re	einforcing	g bar size			
n the setting instruc	tions (steps	Ancho	r property / Setting information	L	#3	#4	#5	9#	L#	8#	6#	#10
		q	= Nominal bar diameter (in.)		3/8	1/2	5/8	³ / ₄	7/ ₈	-	1 ¹ / ₈	11/4
<u>www.mkt-duebel</u> P: <u>40</u> 6374 0116	<mark>e</mark> g	$d_0 \left(d_{\rm bil} \right)$	= Nominal ANSI drill bit size (in.)		7/ ₁₆	5/8	¹¹ / ₁₆	7/ ₈	1	1 ^{1/8}	$1^{3/_{8}}$	11/2
F: +49 6374 9116	-60	$d_{o}\left(d_{\mathrm{bit}} ight)$	= Nominal diamond core bit size ((in.)	N/A	5/8	¹¹ / ₁₆ or ¾	7/ ₈	٢	1 ¹ / ₈	N/A	N/A
		$h_{ef,min}$	= Minimum embedment (inches)		$2^{3}/_{8}$	$2^{3}/_{4}$	$3^{3}/_{8}$	$3^{1}/_{2}$	$3^{1}/_{2}$	4	$4^{1}/_{2}$	5
		$h_{ef,max}$	= Maximum embedment (inches)		$4^{1}/_{2}$	9	$7^{1}/_{2}$	6	$10^{1}/_{2}$	12	$13^{1}/_{2}$	15
		Smin	 Minimum spacing (inches) 		$1^{7}/_{8}$	$2^{1}/_{2}$	$3^{1}/_{8}$	$3^{3}/_{4}$	$4^{3}/_{8}$	5	5 ⁵ / ₈	61/4
Size O	zontal and	C _{min}	= Minimum edge distance (inches	()	$1^{3/4}$	$1^{3/4}$	1 ³ /4	1 ³ /4	$1^{3}/_{4}$	$1^{3/4}$	$2^{3}/_{4}$	$2^{3}/_{4}$
(inch) ins	tallations	h_{min}	= Minimum member thickness (inc	ches)	h_{ef} +	1 ¹ /4				h _{ef} 2d ₀		
9/ ₁₆		5 VMF	://M-MF adhesive anchor system	n selection t	ahla							
5/8					2022			-				
3/4			Injection tool		Plastic car	tridge syst	em		ш	xtra mixir	ig nozzle	
7/ ₈	I	VME/V	M-ME 13 fl. oz. manual dispenser	VME/VM-N	ME 13 fl. 02 n	z. dual cartri ozzle	dge w/mixinç	NV VN	1E/VM-ME	E mixing n	ozzle and e	xtension
-						intro location	and an interest					
1 ¹ / ₈		VIVIE	c/viw-ivi⊏ i3 & ∠∪ ii. oz. manuai dispenser		ne zu II. 02 nozzle al	z. auai carrii nd extensior	age w/mixing		1E/VM-ME	E mixing n	ozzle and e	xtension
1 ^{3/8}												
11/2												

Τ Т Γ Τ Τ Т Т

Т Т Т Т Т

FIGURE 2—INSTALLATION INSTRUCTIONS (Continued)

MKT VME/VM-ME Instruction Card

VME/VM-ME is an easy dispensing, high strength, adhesive which is formulated for use in ancho professionals. Please refer to MKT installation instru detailed information DESCRIPTION:

respiratory discomfort if working indoors or in a co adhesive odors. Wash hands or other affected body p contact occurs. Flush eyes with plenty of water and se PRECAUTION: Safety glasses and dust masks should be used whet Avoid skin and eye contact. Use a NIOSH-appro if eye contact occurs. Move to fresh air if adhesive od stone and masonry. Wear gloves and safety glasses adhesive. Do not sand the adhesive and create silic

Before using, read and review Material Safety Dat: **IMPORTANT!**

This product contains crystalline silica and as supplie

IARC classifies crystalline silica (quartz sand) as a C evidence among workers in industries where there h exposure (via inhalation) to silica dust; e.g. mining, qu brick and pottery workers. This product does not pos processed (e.g. sanded, drilled) be sure to wear prope classification is not relevant. However, if reacted to avoid health risk.

HANDLING AND STORAGE:

Store in a cool, dry, well ventilated area at temperal 95°F (35°C). Keep away from excessive heat an containers closed when not in use. Protect from dar light.

Cartridge temperature must be between 41°F - 104. Partially used cartridges may be stored with harde mixing nozzle. If the cartridge is reused, attach a new initial quantity of the anchor adhesive as described ir Note expiration date on product label before use. #3 and #5).

MKT Metall-Kunststoff-Technik 67685 Weilerbach, Germany Auf dem Immel 2

2. ADHESIVE PISTON PLUGS

	$1^{1}/_{2}$	$1^{1}/_{2}$	#10	I
	1 ^{3/8}	³ / ₈	6#	1 ¹ /4
	1 ¹ / ₈	1 ¹ / ₈	8#	1
	1	Ļ	L#	7/8
Ī	7/ ₈	⁸ / ₂	9#	3/4
٦	3/4	3/ ₄	9#	² / ⁸
	⁸ / ₅	⁸ / ₅	† #	Ι
	⁹¹ / ₆	91/ ₆	-	1/2
Horizonta overhe installat	Plug Size (inch)	ANSI drill bit diameter (inch)	Rebar Size (no.)	Threaded rod diameter (inch)