

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0350 of 24 November 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system VME for concrete

Bonded anchor with anchor rod for use in concrete

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 2, D

21 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-09/0350

Page 2 of 21 | 24 November 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-09/0350

Page 3 of 21 | 24 November 2014

Specific Part

1 Technical description of the product

The "Injection System VME for concrete" is a bonded anchor consisting of a cartridge with injection mortar VME or VM-ME and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 CEN/TS 1992-4:2009 and TR 045	See Annex C 1 to C6
Displacements under tension and shear loads	See Annex C 7 / C 8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-09/0350

Page 4 of 21 | 24 November 2014

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

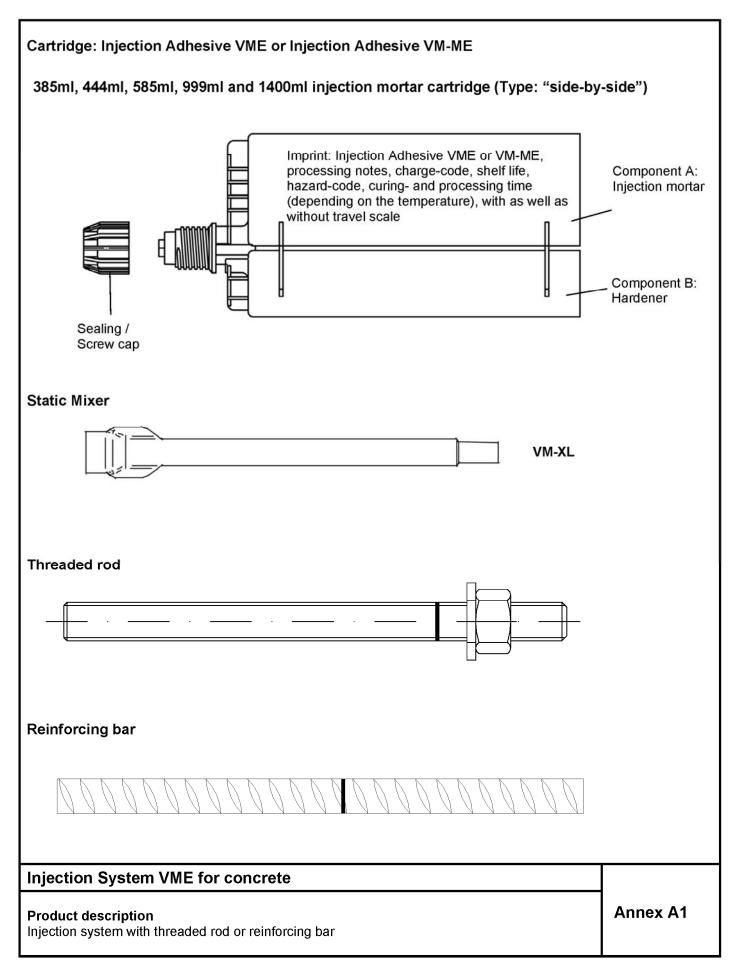
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

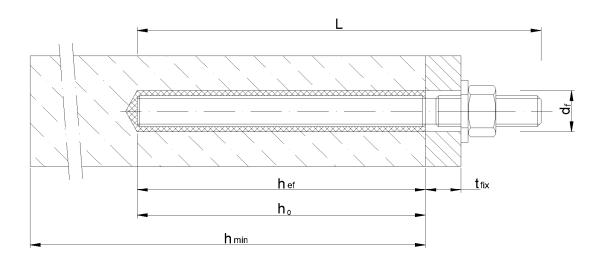
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

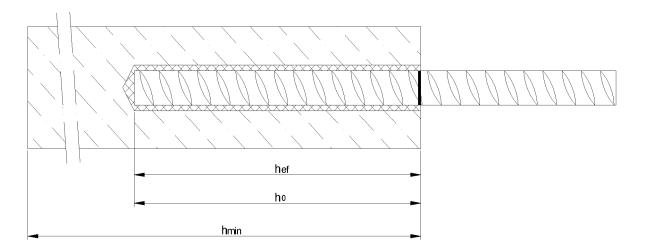
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 24 November 2014 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department

beglaubigt: Baderschneider


English translation prepared by DIBt



Installation threaded rod

Installation reinforcing bar

d_f = diameter of clearance hole in the fixture

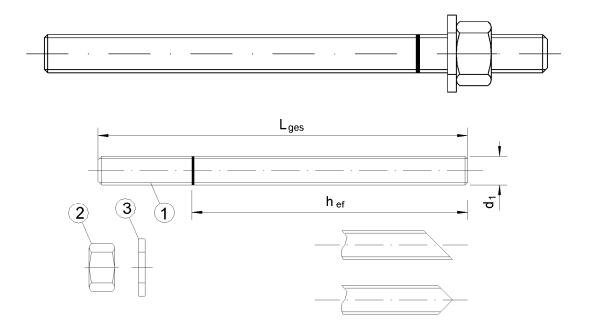
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

 h_0 = depth of drill hole

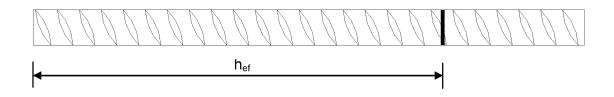
h_{min} = minimum thickness of member

Injection System VME for concrete


Product description Installed condition

Annex A2

Z84663.14


Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut

Commercial standard threaded rod with:

- · Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- · Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rib height of the bar)

Injection System VME for concrete

Product description

Threaded rod and reinforcing bar

Annex A3

Materials

Washer, acc. to to EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000,

or EN ISO 7094:2000

Table A1:

3

Material 1.4401/ 1.4404 / 1.4571, acc. to EN 10088-1:2005

Part	Designation	Material					
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999 or Steel, hot-dip galvanised ≥ 40 µm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009							
1	Threaded rod	Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009					
2	Hexagon nut	Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) acc. to EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) acc. to EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) acc. to EN ISO 898-2:2012					
3	Washer, acc. to EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
Stair	nless steel A4						
1	Threaded rod	Material 1.4401/ 1.4404 / 1.4571, acc. to EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009					
2	Hexagon nut	Material 1.4401/ 1.4404 / 1.4571, acc. to EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009					

High	corrosion resistance steel (HCR)	
1	Threaded rod	Material 1.4529/ 1.4565, acc. to EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009
2	Hexagon nut	Material 1.4529/ 1.4565, acc. to EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer, acc. to EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529/ 1.4565, acc. to EN 10088-1:2005
Rein	forcing bars	

1 Rebar EN 1992-1-1:2004+AC:2010, Annex C Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection System VME for concrete	
Product description Materials	Annex A4

Specifications of intended use

	Threaded rod	Rebar
Static or quasi-static action	M8 – M30	Ø8 – Ø32
Seismic action Performance Category C1	M12 – M30	Ø12 – Ø32
Seismic action Performance Category C2	M12 and M16	_
Cracked concrete	M12 – M30	Ø12 – Ø32
Non-cracked concrete	M8 – M30	Ø8 – Ø32

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.

Temperature Range:

- · I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- · Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System VME for concrete	
Intended Use Specifications	Annex B1

Table B1: Installation parameters for threaded rod

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d ₀ =	[mm]	10	12	14	18	24	28	32	35
Effective anchorage donth	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} =	[mm]	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b ≥	[mm]	12	14	16	20	26	30	34	37
Torque moment	T_{inst}	[Nm]	10	20	40	80	120	160	180	200
Thickness of fixture	$t_{\text{fix,min}} >$	[mm]	0							
Thickness of fixture	t _{fix,max} <	[mm]	1500							
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm							
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150

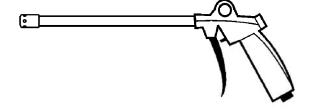
Table B2: Installation parameters for reinforcing bar

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ =	[mm]	12	14	16	18	20	24	32	35	40
Effective anchorage denth	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} =	[mm]	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _b ≥	[mm]	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3 ¹ ≥ 100					h _{ef} + 2d ₀)		
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

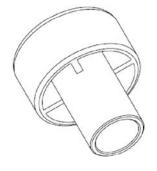
Injection System VME for concrete

Intended Use Installation parameters Annex B2

Steel brush


Table B3: Parameter cleaning and setting tools

Threaded rod	Rebar	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	Retaining Washer
[mm]	[mm]	[mm]	[mm]	[mm]	Туре
M8		10	12	10,5	
M10	8	12	14	12,5	No
M12	10	14	16	14,5	Retaining washer
	12	16	18	16,5	required
M16	14	18	20	18,5	7
	16	20	22	20,5	7
M20	20	24	26	24,5	VM-IA 24
M24		28	30	28,5	VM-IA 28
M27	25	32	34	32,5	VM-IA 32
M30	28	35	37	35,5	VM-IA 35
	32	40	41,5	40,5	VM-IA 40



Drill bit diameter (d₀): 10 mm to 20 mm

Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Retaining washer for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 40 mm

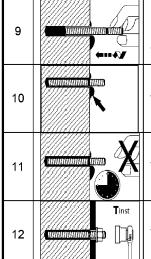
Injection S	vstem VME	for concrete
-------------	-----------	--------------

Intended Use

Cleaning and setting tools

Annex B3

Installation Instructions Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1: or Table B2:). In case of aborted drill hole; the drill hole shall be filled with mortar. Attention! Standing water in the drill hole must be removed before cleaning. Starting from the bottom or back of the drill hole, blow out the hole by compressed air (min. 6 bar) or by hand pump (Annex B3) at least two times. If the drill hole ground is not reached an extension shall be used. 2 or The hand-pump can be used for anchor sizes up to drill hole diameter 20 mm. For drill holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used. Check brush diameter (Table B3:) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > db.min (Table B3:) a minimum 3 of two times. If the drill hole ground is not reached with the brush, a brush extension shall be Finally blow the hole clean again with compressed air (min 6 bar) or a hand pump acc. to Annex B3 a minimum of two times. If the drill hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to drill hole diameter 20 mm. For drill holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used. 4 10 After cleaning, the drill hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the drill hole. If necessary, the cleaning has to be repeated directly prior to dispensing the mortar. Water must not contaminate the drill hole again. 5 Mark the position of the embedment depth on the threaded rod or rebar. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. 6 For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes 7 and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately twothirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating 8 air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation in drill holes larger than \emptyset 20 mm a retaining washer and extension nozzle (Annex B3) shall be used. Observe the gel-/ working times given in Table B4.


Injection System VME for concrete

Intended Use Installation instructions

Annex B4

Installation Instructions (continuation)

Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation the threaded rod should be fixed (e.g. wedges).

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).

After full curing, the add-on part can be installed with the maximum torque (Table B1) by using a calibrated torque wrench.

Table B4: Minimum curing time

Temperature inside	Maximum working	Minimum	curing time
the drill hole	time	dry concrete	wet concrete
≥ 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ +40 °C	12 min	4 h	8 h

Injection System VME for concrete

Intended Use

Installation instructions (continuation) Curing time

Annex B5

Table C1: Characteristic values for **threaded rods** under **tension loads** in **non-cracked concrete** (Design according to TR 029 or CEN/TS 1992-4)

Anchor size threaded	l rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure					•	•					
Characteristic tension Steel, property class 4	.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic tension Steel, property class 5	.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
Characteristic tension Steel, property class 8		$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Characteristic tension Stainless steel A4 and property class 50 (>M2	HCR,	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281
Combined pullout an	d concrete cone failure	9									
Characteristic bond res	sistance in non-cracked	C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	15	15	15	14	13	12	12	12
40°C/24°C	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range	dry and wet concrete	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
III: 72°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Increasing factors for			C30/37				1,	04			
concrete		ψ_{c}	C40/50	1,08							
			C50/60				1,	10			
Factor according to C Section 6.2.2.3	EN/TS 1992-4-5	k ₈	[-]				10	0,1			
Concrete cone failure	•										
Factor according to CEN/TS 1992-4-5 Sec	tion 6.2.3.1	\mathbf{k}_{ucr}	[-]				10	0,1			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Spacing		$s_{\text{cr},N}$	[mm]				3,0) h _{ef}			
Splitting failure											
Edge distance	C _{cr,sp}	[mm]		1,0	·h _{ef} ≤2	$2 \cdot h_{ef} \left(2 \right)$	$,5-\frac{h}{h_{ef}}$	-	· h _{ef}		
Spacing	S _{cr,sp}	[mm]	m] 2 c _{cr,sp}								
Installation safety facto (dry and wet concrete)	Y ₂ = Y inst	[-]		1	,2			1	,4		
	nstallation safety factor				[-] 1,4						

Injection System VME for concrete

Performances

Characteristic values for **threaded rods** under tension loads in non-cracked concrete (Design according to TR 029 or CEN/TS 1992-4)

Annex C1

Table C2: Characteristic values for **threaded rods** under **tension loads** in **cracked concrete** (Design according to TR 029 or CEN/TS 1992-4 and TR 045)

Anchor size threaded rod				M12	M16	M20	M24	M27	M30
Steel failure									
Characteristic tension resis	tance,	= N _{Rk,s,seis}	[kN]	34	63	98	141	184	224
Steel, property class 4.6 Characteristic tension resis	<u> </u>	*KK,S,SelS	[]			-			
Steel, property class 5.8	N _{Rk,s}	= N _{Rk,s,seis}	[kN]	42	78	122	176	230	280
Characteristic tension resis	tance,	– NI	[kN]	67	125	196	282	368	449
Steel, property class 8.8	·	= N _{Rk,s,seis}	[KIN]		123	190	202	300	443
Characteristic tension resis Stainless steel A4 and HCF		_ NI	[kN]	59	110	171	247	230	281
property class 50 (>M24) a		= N _{Rk,s,seis}	[KIN]	39	110	'''	247	230	201
Combined pullout and co			<u>'</u>			<u>'</u>	<u> </u>	<u> </u>	
Characteristic bond resista		te C20/25							
		τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet	τ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:	concrete	τ _{Rk,seis,C2}	[N/mm²]	2,4	2,2	No Pe	rformance I	Determined	(NPD)
40°C/24°C		$ au_{Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,1	No Pe	rformance I	Determined	(NPD)
	dan andt	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
emperature range II: 0°C/43°C		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Pe	rformance I	Determined	(NPD)
		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Performance Determin			(NPD)
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	concrete	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Temperature range III:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)
72°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2			Determined	(NPD)
Increasing factors for concr	rete	C30/37	[-]				04		
(only static or quasi-static a		C40/50	[-]			•	08		
Factor according to		C50/60	[-]				10		
CEN/TS 1992-4-5 Section (6.2.2.3	k ₈	[-]			7	,2		
Concrete cone failure									
Factor according to CEN/TS 1992-4-5 Section (6.2.3.1	k _{cr}	[-]				,2		
Edge distance		C _{cr,N}	[mm]				h _{ef}		
Spacing	$s_{\text{cr},N}$	[mm]			3,0	h _{ef}			
Installation safety factor (dry and wet concrete)		Y ₂ = Y inst	[-]] 1,2 1,4		4			
Installation safety factor (flooded bore hole)		Y ₂ = Y inst	[-]		·	1	,4		

Injection System VME for concrete

Performances

Characteristic values for **threaded rods** under tension loads in cracked concrete (Design according to TR 029 or CEN/TS 1992-4 and TR 045)

Annex C2

Table C3: Characteristic values for **threaded rods** under **shear loads** in cracked and non-cracked concrete (Design according to TR 029 or CEN/TS 1992-4 and TR 045)

										
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s,seis,C1}$	[kN]		ormance	14	27	42	56	72	88
Steel, property class 4.6	$V_{Rk,s,seis,C2}$	[kN]		mined PD)	13	25	No F	erforman (Ni	ce Detern PD)	nined
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]		ormance	18	34	53	70	91	111
oteel, property class 5.5	$V_{Rk,s,seis,C2}$	[kN]		mined PD)	17	31	No F	No Performance Determine (NPD)		nined
	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance,	$V_{Rk,s,seis,C1}$	[kN]		ormance	30	55	85	111	145	177
Steel, property class 8.8	$V_{Rk,s,seis,C2}$	[kN]		mined PD)	27	50	No F	erforman Ni	ce Deterr PD)	nined
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR,	$V_{Rk,s,seis,C1}$	[kN]	II.	ormance	26	48	75	98	91	111
property class 50 (>M24) and 70 (≤ M24)	$V_{Rk,s,seis,C2}$	[kN]		mined PD)	24	44	No F	erforman Ni	ce Deterr PD)	nined
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	[-]				0	,8			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)							
71 1 3	M ⁰ _{Rk,s,seis,C2}	[Nm]				·		CG (IVI D)	,	
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]	4		No Perfo	rmance I	Determin	ed (NPD))	
	M ⁰ _{Rk,s,seis,C2}	[Nm]			ı	1				
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Steel, property class 8.8	M ⁰ Rk,s,seis,C1	[Nm]	-		No Perfo	rmance [Determin	ed (NPD))	
Characteristic bending moment,	M ⁰ _{Rk,s,seis,C2}	[Nm] [Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR,		[Nm]	20	J 32	92	232	434	704	032	1123
property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]	1		No Perfo	rmance [Determin	ed (NPD))	
Concrete pryout failure										
Factor k acc. to TR 029 and k ₃ acc. to CEN/TS 1992-4 Section 6.3.3	k ₍₃₎	[-]				2	,0			
Concrete edge failure										
Effective length of anchor	I _f	[mm]				l _f = min(h	ef; 8 d _{nom})		
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	Y ₂ = Y inst	[-]				1	,0			

Injection System VME for concrete

Performances

Characteristic values for **threaded rods** under shear loads in cracked and non-cracked concrete (Design according to TR 029 or CEN/TS 1992-4 and TR 045)

Annex C3

Table C4: Characteristic values for **rebar** under **tension loads** in **non-cracked concrete** (Design according to TR 029 or CEN/TS 1992-4)

(Desi	(Design according to TR 029 or CEN/TS 1992-4)												
Rebar size				Ø 8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø 25	Ø28	Ø32	
Steel failure													
Characteristic tension re	sistance	$N_{Rk,s}$	[kN]					A _s • f _{uk}					
Combined pullout and	concrete cone failu	ıre											
Characteristic bond resis		d concret	e C20/25										
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11	
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0	
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5	
60°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0	
Temperature range III:	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0		
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5	
Increasing factors for		C30/37	[-]	1,04									
Increasing factors for non-cracked concrete	- Ψc	C40/50	[-]					1,08					
	-	C50/60	[-]	1,10									
Factor according to CEN/TS 1992-4-5 Section	on 6.2.2.3	k ₈	[-]					10,1					
Concrete cone failure													
Factor according to CEN/TS 1992-4-5 Section	on 6.2.3.1	k _{ucr}	[-]					10,1					
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}					
Spacing		S _{cr,N}	[mm]					3,0 h _{ef}					
Splitting failure			T	Г									
Edge distance		C _{cr,sp}	[mm]		1,0	0 · h _{ef} ≤	≤ 2 · h _e	_f 2,5 –	$\frac{h}{h_{ef}}$	≤ 2 ,4 · h	ef		
Spacing	S _{cr,sp}	[mm]	2 C _{cr,sp}										
Installation safety factor (dry and wet concrete)	Y ₂ = Y inst	[-]			1,2				1	,4			
Installation safety factor (flooded bore hole)	Y ₂ = Y inst	[-]	1,4										

Injection System VME for concrete

Performances

Characteristic values of resistance for **rebar** under tension loads in non-cracked concrete (Design according to TR 029 or CEN/TS 1992-4)

Annex C4

Table C5: Characteristic values for **rebar** under **tension loads** in **cracked concrete** (Design according to TR 029 or CEN/TS 1992-4 and TR 045)

Rebar size					Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure						•	•	•	'				
Characteristic tension res	sistance	N _{Rk,s} =	N _{Rk,s,seis,C1}	[kN]		$A_s\boldsymbol{\cdot} f_{uk}$							
Combined pullout and	concrete cone t	failure											
Characteristic bond resis	tance in cracked	conci	rete C20/25										
	dry and wet		$ au_{Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5		
Temperature range I:	concrete		τ _{Rk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5		
40°C/24°C	flooded bore h	nolo.	$\tau_{\text{Rk,cr}}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0		
	nooded bore r	iole	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0		
	dry and wet		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5		
Temperature range II:					4,1	3,7	3,8	3,3	3,5	3,5	3,5		
60°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0			
	flooded bore hole		τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0		
Temperature range III:	dry and wet		τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0		
	concrete	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0			
72°C/43°C	flooded bere bel		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0		
	flooded bore h	ioie	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0		
Increasing factors for			C30/37	[-]				1,04					
cracked concrete		Ψc	C40/50	[-]				1,08					
(only static or quasi-station	c actions)		C50/60	[-]				1,10					
Factor according to CEN/TS 1992-4-5 Section	n 6.2.2.3		k ₈	[-]				7,2					
Concrete cone failure													
Factor according to CEN/TS 1992-4-5 Section	n 6.2.3.1		k _{cr}	[-]				7,2					
Edge distance	C _{cr,N}	[mm]				1,5 h _{ef}							
Spacing	S _{cr,N}	[mm]				3,0 h _{ef}							
Installation safety factor (dry and wet concrete)	Y ₂ = Y inst	[-]	1,2 1,4										
Installation safety factor (flooded bore hole)		Y ₂ = Y inst	[-]	1,4									

Injection System VME for concrete

Performances

Characteristic values of resistance for **rebar** under tension loads in cracked concrete (Design according to TR 029 or CEN/TS 1992-4 and TR 045)

Annex C5

Table C6: Characteristic values of resistance for **rebar** under **shear loads** in cracked and non-cracked concrete (Design according to TR 029 or CEN/TS 1992-4 and TR 045)

Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Steel failure without lever arm										•	
Characteristic shear resistance	$V_{Rk,s}$	[kN]				0,5	50 • A _s •	f_{uk}			
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	Perfor Deter	lo mance mined PD)			0,	44 • A _s •	f_{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	[-]					0,8				
Steel failure with lever arm											
Characteristic bending moment	${f M}^0_{\sf Rk,s}$	[Nm]				1.2	2 · W _{el} ·	f_{uk}			
	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Pe	rforman	ce Dete	rmined	(NPD)		
Concrete pryout failure											
Factor k acc. to TR 029 and k_3 acc. to CEN/TS 1992-4 Section 6.3.3	k ₍₃₎	[-]					2,0				
Concrete edge failure											
Effective length of anchor			l _f = m	in(h _{ef} ; 8	d _{nom})						
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	Y ₂ = Y inst	[-]					1,0				

Injection System VME for concrete

Performances

Characteristic values of resistance for **rebar** under shear loads in cracked and non-cracked concrete (Design according to TR 029 or CEN/TS 1992-4 and TR 045)

Annex C6

Table C7:	Displacements under tension loads ¹⁾ (t	hreaded rod)
Table C1.	Displacements under tension loads (ti	ili caucu i ou	

Anchor size threaded roo	t		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete C	20/25 under sta	atic and quasi-st	atic acti	on						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concrete C20/25			seismic	C1 actio						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]			0,032	0,037	0,042	0,048	0,053	0,058
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	ļ <u>.</u> .		0,21	0,21	0,21	0,21	0,21	0,21
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	1	ormance mined	0,037	0,043	0,049	0,055	0,061	0,067
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]		PD)	0,24	0,24	0,24	0,24	0,24	0,24
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24
Cracked concrete C20/2	5 under seismi	c C2 action								
Temperature range I:	δ _{N,scis(DLS)}	[mm/(N/mm²)]			0,03	0,05				
40°C/24°C	δ _{N,seis(ULS)}	[mm/(N/mm²)]	No Borf	ormanas	0,06	0,09	1			
Temperature range II:	δ _{N,seis(DLS)}	[mm/(N/mm²)]	No Performance 0,03 0,05			No Dorf	armanas F	Dotormir -	4 (NIDD	
60°C/43°C	δ _{N,seis(ULS)}	[mm/(N/mm²)]] (NI	PD)	0,06	0,09	тио Репо	ormance [Jetermine	u (NPD
Temperature range III:	δ _{N,seis(DLS)}	[mm/(N/mm²)]]		0,03	0,05	5			
			1				1			

¹⁾ Calculation of the displacement

$$\begin{split} & \delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} ~\cdot \tau; \\ & \delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor} ~\cdot \tau; \end{split}$$

Displacement under shear load¹⁾ (threaded rod) Table C8:

Anchor size threaded ro	d		М8	M10	M12	M16	M20	M24	M27	M30
Non-cracked and cracke	d concrete C	20/25 under	static, q	ıuasi-st	atic and	d seism	ic C1 a	ction		
All tomporature ranges	$\delta_{ extsf{V0}} extsf{-factor}$	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
All temperature ranges	All temperature ranges $\delta_{V_{\infty}}$ -factor				0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C20/2	5 under seism	nic C2 action	1							
All tomporature ranges	$\delta_{V,seis(DLS)}$	[mm/kN]		Performance		0,1	N. D. C.		Ootormino	4 (NIDD)
All temperature ranges	$\delta_{V,seis(ULS)}$	[mm/kN]	Determined (NPD)		0,2	0,1	No Performance D		Jeteillille	u (INPD)

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$ $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Injection System VME for concrete

Performances

Displacements (threaded rod)

Annex C7

Table C9: Displacements under tension load ¹⁾ (rebar)												
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Non-cracked concr	ete C20/25 ı	ınder static and	quasi-s	tatic acti	ion							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037	
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043	
II: 60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043	
III: 72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172	
Cracked concrete C	220/25 unde	r static, quasi-s	tatic and	l seismic	C1 acti	on						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061	
I: 40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]]	-	0,21	0,21	0,21	0,21	0,21	0,21	0,21	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070	
II: 60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]]	-	0,24	0,24	0,24	0,24	0,24	0,24	0,24	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070	
III: 72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24	0,24	

¹⁾ Calculation of the displacement

Table C10: Displacement under shear load¹⁾ (rebar)

Rebar size				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static, quasi-static and seismic C1 action											
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

Injection System VME for concrete

Performances

Displacements (rebar)

Annex C8

 $[\]delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor } \cdot \tau;$

 $[\]delta_{N\infty}$ = $\delta_{N\infty}$ -factor $\cdot \tau$;

 $[\]begin{array}{l} \delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor} & \cdot \text{V}; \\ \delta_{\text{V}\infty} = \delta_{\text{V}\infty}\text{-factor} & \cdot \text{V}; \end{array}$